Math, asked by sharmakumartushar, 10 months ago

If a, b and c are the roots of the equation x^3 - 3x^2 + 2x + 1 = 0, then what is the value of =
1/a + 1/b + 1/c​

Answers

Answered by ItSdHrUvSiNgH
11

Step-by-step explanation:

 \huge\blue{\underline{\underline{\bf Question:-}}}

If \:  \: a \: b \: c \:  \: are \: roots \:  \: of \:  \:  \\  {x}^{3}  - 3 {x}^{2}  + 2x + 1 \\  \\ find \:  \: the \:  \: value \:  \: of \implies \\  \\  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}

 \huge\blue{\underline{\underline{\bf Answer:-}}}

Lets \:  \: simplify \:  \: the \:  \: value... \\  \\ \implies  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{c}  \\  \\  \implies  \frac{a + b}{ab}  +  \frac{1}{c}  \\  \\  \implies   \boxed{\frac{ac + bc + ab}{abc} }

 \\  \\ Now, \:  \: from \:  \: given \:  \: equation... \\  \\  {x}^{3}  - 3{x}^{2}  + 2x + 1 = 0 \\  \\ comparing \:  \: with \:  \: general \:  \: equation.. \\  \\  \large \boxed{a {x}^{3} + b {x}^{2}  + cx + d = 0 } \\  \\ a + b + c =  \frac{ - b}{a}  =  \frac{3}{1 }  = 3 \\  \\ ab + bc + ca =  \frac{c}{a}  =  \frac{2}{1}  = 2 \\  \\  a \times b \times c =  \frac{d}{a}  = 1 \\  \\ so \:  \: value \:  \: of \:  \:  \frac{ab + bc +ca }{a \times b \times c}  \:  \: is \:  \: directly.. \\  \\  \implies   \frac{2}{1}   \\  \\  \huge \boxed{ \implies  \frac{ab + bc + c}{a \times b \times c} =  \frac{1}{a} +  \frac{1}{b}   +  \frac{1}{c}  = 2  }

Similar questions