Math, asked by anshika7064, 11 months ago

If A,B and P are the points (-4,3)(0,-2) and (alpha, beeta) respectively and P is equidistant from A and B, show that 8alpha-10beeta+21=0​

Answers

Answered by Anonymous
49

SOLUTION:-

Given,

Three points A(-4,3), B(0,-2) and P(a,b) such that P is the equidistant from A &B.

Now use the formula which states that the distance any two points is given by;

 =  >  \sqrt{(x2 - x1) {}^{2} + (y2 - y1) {}^{2}  } .

So,

pa =  \sqrt{( - 4 - a) {}^{2} + (3 - b) {}^{2}  } ............(1)

Also,

pb =  \sqrt{(0 - a) {}^{2} + ( - 2 - b) {}^{2}  } .............(2)

Now, as PA= PB equating (1) & (2), we get

 =  >  \sqrt{( - 4 - a) {}^{2} + (3 - b) {}^{2}  }  =  \sqrt{(0 - a) {}^{2} +  ( - 2 - b) {}^{2}  }

Squaring both the sides;

(-4-a)² +(3-b)² = (0- a)² + (-2-b)²

Using the identity ( a+b)².

(-4,a)² + (3-b)²= (0-a)² + (-2-b)²

=)[(-4)² + (-a)² + 2(-4)(-a)] + [(3)² + (-b)²+ 2(3)(-b)] = [(0)² +(-a)² + 2(0)(-a)] +[(-2)² + (-b)² + 2(-2)(-b)]

=) 16++8a+9+ -6b= + 4+ + 4b

=) 16 + + 8a +9+ - 6b -a² -4-b²-4b=0

=) 25 +8a -6b -4-4b= 0

=) 8a -10b+21= 0 [Proved]

Hope it helps ☺️

Similar questions