Math, asked by edfcvbj, 10 months ago

if a,b are positive numbers and a+b=1, the minimum value of a^4+b^4=? I will surely mark as brainliest do not scam

Answers

Answered by pc0354525
1

Answer:

Step-by-step explanation:

(a_{1} b_{1} + a_{2} b_{2} + . . . + a_{n} b_{n})^{2} \leq (a^{2} _{1} + a^{2} _{2} + . . . + a^{2} _{n})  (b^{2} _{1} + b^{2} _{2} +b^{2} _{3} . . . + b^{2} _{n})

So

(a + b)^{2} \leq  (a^{2} + b^{2} ) (1 + 1)

1 \leq 2(a^{2} + b^{2} )

(a^{2} + b^{2} ) \geq  \frac{1}{2}

Use the inequality… again:

(a^{2}  + b^{2} )^{2} \leq  (a^{4} + b^{4} ) (1 + 1)

\frac{1}{4} \leq 2(a^{4} + b^{4} )

a^{4} + b^{4}  \leq   \frac{1}{8}

So the small possible value of a^{4}  + b^{2}  is  \frac{1}{8}

Oh, I (almost) forgot. The inequality become an inequality if \frac{a_{1} }{b_{1} }  = \frac{a_{2} }{b_{2} }  = . . . = \frac{a_{n} }{b_{n} }

So  a^{4}  + b^{2}  =  \frac{1}{8}  when \frac{a}{1 }  = \frac{b}{1}   or   a = b

But  a + b = 1  so a = b = \frac{a + b}{2} = \frac{1}{2}

Hope this helps you !!!

Similar questions