CBSE BOARD X, asked by salmanskk633, 2 months ago

If a,b are rational number and 2+3√3/4-5√3= a+b√5, find the values of a and b.

Answers

Answered by sanmaykamble20062008
0

Answer:

the values a = 7 and b = 4

Explanation:

if \:  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  = a \:  + b \sqrt{3}  \\  =   \frac{(  {2 +  \sqrt{3} })^{2}  }{(2 -  \sqrt{3}) +(2 +  \sqrt{3}  ) }  = a + b  \sqrt{3}  \\  =  \frac{4 + 3 + 4 \sqrt{3} }{ {(2}^{2})  - ( { \sqrt{3} }^{2}) }   = a + b \sqrt{3}  \\  =  \frac{7 + 4 \sqrt{3} }{4 - 3}  = a \:  + b \:  \sqrt{3}  \\  = 7 + 4 \sqrt{3}  = a + b \sqrt{3}  \\ compare \: both \: the \: sides \:

so we get the value A = 7 and B = 4

Similar questions