Math, asked by Dyukrish, 13 hours ago

If a, b are rationals, find the value of a and b if av2 +bV3 - V98 + V108 – V48 – V72​

Answers

Answered by vivekvicky08328
0

Answer:

\begin{gathered}a \sqrt{2} + b \sqrt{3} = \sqrt{98} + \sqrt{108} - \sqrt{48} - \sqrt{72} \\ a \sqrt{2} + b \sqrt{3} = \sqrt{2 \times 7 \times 7} + \sqrt{2 \times 2 \times 3 \times 3 \times 3} - \sqrt{2 \times 2 \times 2 \times 2 \times 3} - \sqrt{2 \times 2 \times 2 \times 3 \times 3} \\ a \sqrt{2} + b \sqrt{3} = 7 \sqrt{2 } + 6 \sqrt{3} - 4 \sqrt{3} - 6 \sqrt{2} \\ a \sqrt{2} + b \sqrt{3} = \sqrt{2} + 2 \sqrt{3} \\ \end{gathered}

a

2

+b

3

=

98

+

108

48

72

a

2

+b

3

=

2×7×7

+

2×2×3×3×3

2×2×2×2×3

2×2×2×3×3

a

2

+b

3

=7

2

+6

3

−4

3

−6

2

a

2

+b

3

=

2

+2

3

Therefore, a= 1 and b= 2

Similar questions