Math, asked by Ridhima8640, 1 year ago

If a b are real numbers such that a+b=3 a^2+b^2=7 the value of a^4+b^4 is

Answers

Answered by Jehriknowledge
1

Answer:

hey the answer is in the photo...

Step-by-step explanation:

plzz mark me as brainliest and tap on thanks option...

And follow me also......

Attachments:
Answered by ankitsingh4834
1

Answer:

47

Step-by-step explanation:

First we have to find the value of ab.

So, given a^2+b^2=7

            or, (a+b)^2 - 2ab=7

            or, (3)^2 - 2ab=7

            or, 9 - 2ab=7

            or, ab=1

Next,

a^4+b^4

=  (a^2)^2+(b^2)^2

= (a^2+b^2) - 2a^2b^2

= (7)^2 - 2(ab)^2

= 49 - 2.(1)^2

= 49-2

= 47

Therefore answer is 47.

     

Similar questions