If a,b are the roots of and c, d are the roots of , then the value of (a-c)(b-c)(a+d)(b+d) is?
1)
1)
1)
4)None of these
Please show the process....!
ankitkumar0102:
Please solve it...
Answers
Answered by
9
a, b are the roots of x² + p x + 1 = 0
let a = [ -p + √(p² - 4) ]/2 and b = [-p -√(p²-4)]/2
So, a + b = -p and a b = 1
=> a² + b² = (a+b)² - 2ab = p² - 2
c and d are the roots of x² + q x + 1 = 0
let c = [-q + √(q²-4) ]/2 and d = [-q - √(q²-4) ]/2
also, c d = 1 and c + d = - q
=> c² + d² = (c+d)² - 2cd = q² - 2
Now, (a - c) (b -c) (a+d) (b+d) : expand and substitute the above :
= [ ab + c² -c (a+b) ] [ ab + d² + d(a+b) ]
= [ 1 + c² + c p ] [ 1 + d² - p d ]
= [ 1 + d² - p d + c² + c² d² - c² p d + cp + c p d² - c p² d ]
= [ 1 + c² + d² - p d + (cd)² - cp *cd + cp + pd *cd - p² cd ]
= [ 1 + q² - 2 - p d + 1 - p c + c p + pd - p² ]
= q² - p²
==================
well, you could multiply the other terms also: as follows:
(a-c) (b -c) (a +d ) (b+d) = (a-c)(b+d) (b-c)(a+d)
= [ab + ad - bc- cd ] [ab + bd - ca - cd ]
= [ 1 + ad - bc - 1 ] [ 1 + bd - ca - 1]
= (ad - bc) (bd - ac)
= abd² - a²cd - b²cd + abc²
= d² - a² - b² + c²
= (d² + c²) - (a² + b²)
= q² - 2 - (p² - 2)
= q² - p²
let a = [ -p + √(p² - 4) ]/2 and b = [-p -√(p²-4)]/2
So, a + b = -p and a b = 1
=> a² + b² = (a+b)² - 2ab = p² - 2
c and d are the roots of x² + q x + 1 = 0
let c = [-q + √(q²-4) ]/2 and d = [-q - √(q²-4) ]/2
also, c d = 1 and c + d = - q
=> c² + d² = (c+d)² - 2cd = q² - 2
Now, (a - c) (b -c) (a+d) (b+d) : expand and substitute the above :
= [ ab + c² -c (a+b) ] [ ab + d² + d(a+b) ]
= [ 1 + c² + c p ] [ 1 + d² - p d ]
= [ 1 + d² - p d + c² + c² d² - c² p d + cp + c p d² - c p² d ]
= [ 1 + c² + d² - p d + (cd)² - cp *cd + cp + pd *cd - p² cd ]
= [ 1 + q² - 2 - p d + 1 - p c + c p + pd - p² ]
= q² - p²
==================
well, you could multiply the other terms also: as follows:
(a-c) (b -c) (a +d ) (b+d) = (a-c)(b+d) (b-c)(a+d)
= [ab + ad - bc- cd ] [ab + bd - ca - cd ]
= [ 1 + ad - bc - 1 ] [ 1 + bd - ca - 1]
= (ad - bc) (bd - ac)
= abd² - a²cd - b²cd + abc²
= d² - a² - b² + c²
= (d² + c²) - (a² + b²)
= q² - 2 - (p² - 2)
= q² - p²
Similar questions