Math, asked by likhakaki, 5 hours ago

If a, B are the roots of the equation x2 -2x + 3 = 0, form the equation whose roots are a + 1 /beta, beta + 1/alpha​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \: equation \:  {x}^{2} - 2x + 3 = 0

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  +  \beta  =  - \dfrac{( - 2)}{1}  = 2

And,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  \beta  = \dfrac{3}{1} = 3

Now, Consider

\rm :\longmapsto\:S =  \alpha  + \dfrac{1}{ \beta }  +  \beta  + \dfrac{1}{ \alpha }

\rm \:  =  \: ( \alpha  +  \beta ) + \dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }

\rm \:  =  \: 2 + \dfrac{ \beta  +  \alpha }{ \alpha \beta  }

\rm \:  =  \: 2 + \dfrac{2}{3}

\rm \:  =  \: \dfrac{6 + 2}{3}

\rm \:  =  \: \dfrac{8}{3}

Now, Consider

\rm :\longmapsto\:P = \bigg[ \alpha  + \dfrac{1}{ \beta } \bigg] \times \bigg[ \beta  + \dfrac{1}{ \alpha } \bigg]

\rm \:  =  \:  \alpha \beta   + 1 + 1 +  \dfrac{1}{ \alpha  \beta }

\rm \:  =  \: 3 + 2 + \dfrac{1}{3}

\rm \:  =  \: 5 + \dfrac{1}{3}

\rm \:  =  \: \dfrac{15 + 1}{3}

\rm \:  =  \: \dfrac{16}{3}

So, Required Quadratic equation is given by

 \purple{\rm :\longmapsto\: {x}^{2} - Sx + P = 0}

\rm :\longmapsto\: {x}^{2} - \dfrac{8}{3}x +  \dfrac{16}{3}  = 0

\rm :\longmapsto\: \dfrac{ {x}^{2} - 8x +  16}{3}  = 0

\rm :\longmapsto\: {x}^{2}  - 8x + 16 = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions