Math, asked by kishur3, 9 months ago

If a.B
are zero's of polynomial 3x²-24x+243. Then find a+B.​

Answers

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

Then

 \displaystyle \:  \alpha  +   \beta \:  =  -  \frac{b}{a}  \:  \: and \:  \:   \: \alpha \beta \:  =  \frac{c}{a}

GIVEN

a, B are the zeros of the polynomial

3 {x}^{2}  - 24x + 243

TO DETERMINE

The value of a + B

CALCULATION

The given Quadratic polynomial is

3 {x}^{2}  - 24x + 243

Comparing with

a {x}^{2}  + bx + c

We get

a = 3 \:  , \:   b = - 24 \:  , \:  c = 243

Hence

\sf{Sum \:  of \:  the \:  Zeroes \: } =  \displaystyle \:    -  \frac{b}{a}   =  -  \frac{ - 24}{3}  = 8

 \implies \: a + B = 8

Similar questions