If a, b are zeroes of the quadratic polynomial ax2+bx+c then find the value of a2 - b2
Answers
Answered by
18
Let given quadratic polynomial be,
f(x)=ax²+bx+c
Let A and B be the zeroes of f(x).
Then we know that,
A={-b+√(b²-4ac)}/2a
and,
B={-b-√(b²-4ac)}/2a
Now we have,
=A²
=[{-b+√(b²-4ac)}/2a]²
={b²-2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac-2b√(b²-4ac)}/4a²
and
=B²
=[{-b-√(b²-4ac)}/2a]²
={b²+2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac+2b√(b²-4ac)}/4a²
Now,
=A²-B²
={2b²-4ac-2b√(b²-4ac)}/4a²-{2b²-4ac+2b√(b²-4ac)}/4a²
={2b²-4ac-2b√(b²-4ac)-2b²+4ac-2b√(b²-4ac)}/4a²
={-4b√(b²-4ac)}/4a²
=-b√(b²-4ac)/a²
Hence,
A²-B²=-b√(b²-4ac)/a²
f(x)=ax²+bx+c
Let A and B be the zeroes of f(x).
Then we know that,
A={-b+√(b²-4ac)}/2a
and,
B={-b-√(b²-4ac)}/2a
Now we have,
=A²
=[{-b+√(b²-4ac)}/2a]²
={b²-2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac-2b√(b²-4ac)}/4a²
and
=B²
=[{-b-√(b²-4ac)}/2a]²
={b²+2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac+2b√(b²-4ac)}/4a²
Now,
=A²-B²
={2b²-4ac-2b√(b²-4ac)}/4a²-{2b²-4ac+2b√(b²-4ac)}/4a²
={2b²-4ac-2b√(b²-4ac)-2b²+4ac-2b√(b²-4ac)}/4a²
={-4b√(b²-4ac)}/4a²
=-b√(b²-4ac)/a²
Hence,
A²-B²=-b√(b²-4ac)/a²
Bhriti182:
Ty.. dear
Answered by
4
Let given quadratic polynomial be,
f(x)=ax²+bx+c
Let A and B be the zeroes of f(x).
Then we know that,
A={-b+√(b²-4ac)}/2a
and,
B={-b-√(b²-4ac)}/2a
Now we have,
=A²
=[{-b+√(b²-4ac)}/2a]²
={b²-2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac-2b√(b²-4ac)}/4a²
and
=B²
=[{-b-√(b²-4ac)}/2a]²
={b²+2b√(b²-4ac)+b²-4ac}/4a²
={2b²-4ac+2b√(b²-4ac)}/4a²
Now,
=A²-B²
={2b²-4ac-2b√(b²-4ac)}/4a²-{2b²-4ac+2b√(b²-4ac)}/4a²
={2b²-4ac-2b√(b²-4ac)-2b²+4ac-2b√(b²-4ac)}/4a²
={-4b√(b²-4ac)}/4a²
=-b√(b²-4ac)/a²
Hence,
A²-B²=-b√(b²-4ac)/a²
Similar questions