Math, asked by sagaraulakh8, 2 months ago

if a,b are zeros of the quadratic polynomial f(x) = 2x^2+11x+5 , find (a). a^4+b^4 (b). 1/a+1/b-2ab
its unjent please ​

Answers

Answered by ImperialGladiator
7

Answer:

  • (a) a⁴ + b⁴ = 625
  • (b) 1/a + 1/b - 2ab = -36/5

Explanation:

Given polynomial,

⇒ 2x² + 11x + 5

On comparing with the general form of equation ax² + bx + c

  • a = 2
  • b = 11
  • c = 5

Using quadratic formula,

  \implies \boldsymbol{x \: =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a} }

Substituting the values,

{\implies \boldsymbol{x =  \dfrac{ - 11 \pm  \sqrt{ {(11)}^{2}  - 4(2)(5)}  }{2(2)} }}

\implies \boldsymbol{x =  \dfrac{ - 11 \pm \sqrt{121 - 40} }{4} }

\implies \boldsymbol{x =  \dfrac{ - 11 \pm \sqrt{81} }{4} }

\implies \boldsymbol{x =  \dfrac{ - 11 \pm9}{4} }

\implies \boldsymbol{x =  \dfrac{ - 20}{4} \: { \rm \: or} \: \dfrac{ - 2}{4}   }

\implies \boldsymbol{x = \dfrac{ - 1}{2} \: { \rm \: of} \:  - 5  }

 \rm \therefore \: zeros \: of \: the \: polynomial \: are \:  \dfrac{ - 1}{2}  \: and \:  - 5

Now, Solving (a) :- a⁴ + b⁴

 =  { \bigg( \dfrac{ - 1}{2}  \bigg)}^{4}  +   \big( - 5 \big)^{4}

 =  \dfrac{1}{16}  + 625

 =  \dfrac{10000}{16}

 =  {625}

 \boldsymbol{\therefore {a}^{4}  +  {b}^{4}  = 625}

And also, for (b) 1/a + 1/b - 2ab

 =  \dfrac{1}{a}  +  \dfrac{1}{b}  + 2ab

 =  \dfrac{1}{ \frac{ - 1}{2} }  +  \dfrac{1}{ - 5}  - 2 \bigg(  \dfrac{ - 1}{2} \bigg)( - 5)

 =  - 2 +  \dfrac{ - 1}{5}  - 5

 =  \dfrac{ - 10 - 1 - 25}{5}

 =  \dfrac{ - 36}{5}

 \therefore \boldsymbol{ \dfrac{1}{a}  +  \dfrac{1}{b}  - 2ab = \dfrac{ - 36}{5}}

_____________________

Similar questions