Math, asked by mrbrainliest93, 9 months ago

If (a)/(b)+(b)/(a)=-1(a b!=0) the value of a^(3)-b^(3) is:
a) 1
b) -1
c) 0
d) 1/2​

Answers

Answered by anindyaadhikari13
3

\star\:\:\bf\large\underline\blue{Question:-}

  • If  \frac{a}{b}  +  \frac{b}{a}  =  - 1 and a \neq b find the value of  {a}^{3}  -  {b}^{3}

\star\:\:\bf\large\underline\blue{Solution}

 \frac{a}{b}  +  \frac{b}{a}  =  - 1

 \implies  \frac{ {a}^{2} +  {b}^{2}  }{ab}  =  - 1

 \implies  {a}^{2}  +  {b}^{2}  =  - ab

 \implies  {a}^{2}  +  {b}^{2}   + ab = 0

Now,

 {a}^{3}  -  {b}^{3}

 = (a - b)( {a}^{2}  + ab +  {b}^{2} )

 = (a - b) \times 0

 =  0

\star\:\:\bf\large\underline\blue{Answer:-}

  •  {a}^{3}  -  {b}^{3}  = 0
Similar questions