Math, asked by anujnegiixcrollno, 5 months ago

If a/b + b/a = 1, (a , b are not equal to zero) , Find the value of a^3 + b^3 ; (where ^ means power or exponent) *
-1
0
1
1/2​

Answers

Answered by Anonymous
10

\huge{\mathbb{\red{ANSWER:-}}}

Given :-

\sf{\dfrac{a}{b} + \dfrac{b}{a} = 1}

a , b ≠ 0

To Find :-

\sf{(a^{3} + b^{3}) = ?}

Solution :-

\sf{\dfrac{a}{b} + \dfrac{b}{a} = 1}

Here ,

Let :- \sf{\dfrac{a}{b} = x}

\sf{then \: ,}

\sf{\dfrac{b}{a} =\dfrac{1}{x}}

Now ,

\sf{x + \dfrac{1}{x} = 1}

Doing square both side -

\sf{x^{2} + \dfrac{1}{x^{2}} + 2 = 1}

\sf{x^{2} + \dfrac{1}{x^{2}} = -1}

\sf{x(x^{2} + \dfrac{1}{x^{2}}) = -x}

\sf{x^{3} + \dfrac{1}{x} = -x}

\sf{x^{3} = -(x + \dfrac{1}{x})}

\sf{ x^{3} = -1}

means ,

\sf{\dfrac{a^{3}}{b^{3}} = -1}

\sf{a^{3} = - b^{3}}

\sf{a^{3} + b^{3} = 0}

Result :-

\sf{value \: of \: (a^{3} + b^{3}) \: is \: \: 0 . }

Similar questions