Math, asked by iamradhikacom, 9 months ago

If a/b +b/a =-1 then a^3-b^3 plz solve fastttt​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ value \ of \ a^{3}-b^{3} \ is \ 0.}

Given:

\sf{\dfrac{a}{b}+\dfrac{b}{a}=-1}

To find:

\sf{The \ value \ of \ a^{3}-b^{3}.}

Solution:

\sf{\leadsto{\dfrac{a}{b}+\dfrac{b}{a}=-1}}

\sf{\leadsto{\dfrac{a^{2}+b^{2}}{ab}=-1}}

\sf{\leadsto{a^{2}+b^{2}=-ab}}

\sf{Adding \ ab \ on \ both \ sides, \ we \ get}

\sf{\leadsto{a^{2}+b^{2}+ab=0...(1)}}

\sf{But,}

\sf{a^{3}-b^{3}=(a-b)(a^{2}+b^{2}+ab)}

\sf{From \ equation (1)}

\sf{\leadsto{a^{3}-b^{3}=(a-b)\times0}}

\sf{\leadsto{\therefore{a^{3}-b^{3}=0}}}

\sf\purple{\tt{\therefore{The \ value \ of \ a^{3}-b^{3} \ is \ 0.}}}

_________________________________

Extra information:

\sf{a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})}

\sf{a^{3}+b^{3}=(a+b)^{3}-3ab(a+b)}

\sf{(a+b)^{2}=(a-b)^{2}+4ab}

\sf{(a-b)^{2}=(a+b)^{2}-4ab}

Similar questions