Math, asked by abhi358, 1 year ago

if a/b +b/a = -1 then find the value of a^3 -b^3

Answers

Answered by BEJOICE
2

given \:  \:  \frac{a}{b}  +  \frac{b}{a}  =  - 1 \\  \frac{ {a}^{2} +  {b}^{2}  }{ab}  =  - 1 \\ {a}^{2} +  {b}^{2}  =  - ab \\ {a}^{2} +  {b}^{2}   +  ab = 0 -  -  - (1) \\  \\  {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  + ab +  {b}^{2} ) \\ substituting \:  \: from \:  \: (1) \\  = (a - b) \times 0 = 0

abhi358: thankkssss
BEJOICE: Welcome
abhi358: hey can u pls help me with another question
BEJOICE: yeah sure. I will try
BEJOICE: U may message me link of your questions
abhi358: but it aays only some users can msg
abhi358: can i try to send qs some other way
BEJOICE: I send one message
BEJOICE: Check whether you get it or not
Answered by harshmakwana505
1

Given,a/b+b/a= -1

Solving it,

a^2/ab+b^2/ab= -1

=> a^2+b^2 = -ab

=> a^2+b^2+ab=0         .......................Eq.(1)

Now, a^3-b^3=(a-b)(a^2+ab+b^2)  ...................Eq.(2)

Substituiting the value of Eq.(1) into Eq.(2)

We get, a^3-b^3=(a-b)*0

Therefore, a^3-b^3=0.


Thanks!!!

Similar questions