if a/b=b/c and a, b, c > 0 then show that a^2+b^2/ab=a+c/b
Answers
Step-by-step explanation:
If a/b = b/c and a, b, c > 0, then show that
i. (a + b + c)(b - c) = ab - c2
ii. (a2 + b2)(b2 + c2) = (ab + be)2
iii. (a2 + b2)/ab = (a + c)/b
Let a/b = b/c = k
∴ b = ck
∴ a = bk = (ck)k
∴ a = ck2 …(ii)
i. (a + b + c)(b – c) = ab – c2 L.H.S = (a + b + c) (b – c) = [ck2 + ck + c] [ck – c] … [From (i) and (ii)] = c(k2 + k + 1) c (k – 1) = c2(k2 + k + 1) (k – 1) R.H.S = ab – c2= (ck2) (ck) – c2 … [From (i) and (ii)] = c2k3 – c2 = c2(k – 1) = c2(k – 1) (k2 + k + 1) … [a3 – b3 = (a – b) (a2 + ab + b2] ∴ L.H.S = R.H.S ∴ (a + b + c) (b – c) = ab – c2
ii. (a + b2)(b + c2) = (ab + bc)2 b = ck; a = ck2 L.H.S = (a2 + b2) (b2 + c2) = [(ck2) + (ck)2] [(ck)2 + c2] … [From (i) and (ii)] = [c2k4 + c2k2] [c2k2 + c2] = c2k2(k2 + 1) c2(k2 + 1) = c4k2(k2 + 1)2 R.H.S = (ab + bc)2 = [(ck2) (ck) + (ck)c2] …[From (i) and (ii)] = [c2k3 + c2k2] = [c2k(k2 + 1)]2 = c4(k2 + 1)2 ∴ L.H.S = R.H.S ∴ (a2 + b2) (b2 + c2) = (ab + bc)2
¡¡¡.third answer in picture.