Math, asked by pragya1226, 1 year ago

If "(a+b):(b+c):(c+a)=5:7:6" and "2a-3b+4c=66" then value of "c" will be?​

Answers

Answered by SRAVYACHANAKYA
8

Answer:

c=4

Step-by-step explanation:

a +b=5

a= 5-b

b+c=7

b=7-c

substitute finally

c=4

Answered by slicergiza
4

The value of c would be 24

Step-by-step explanation:

Given,

(a+b):(b+c):(c+a)=5:7:6            ........(1),

2a-3b+4c=66                         .........(2),

From (1),

\frac{a+b}{b+c}=\frac{5}{7}

7a+7b=5b+5c

7a+7b-5b-5c=0

7a+2b-5c=0                  .........(3),

Again from equation (1),

\frac{b+c}{c+a}=\frac{7}{6}

6b+6c=7c+7a

6b+6c-7c-7a=0

-7a+6b-c=0                  .............(4)

Equation (3) + equation (4),

8b-6c=0                      .............(5),

2 × Equation (4) + 7 × Equation (2),

-14a + 12b - 2c + 14a - 21b + 28c = 462

-9b + 26c = 462           ..........(6)

9 × equation (5) + 8 × equation (6),

-54c + 208c = 462

154c = 3696

\implies c =\frac{3696}{154}=24

Hence, the value of c is 24.

#Learn more :

Solve the following system of linear equations in three variables :

https://brainly.in/question/11101802

Similar questions