Math, asked by Vishanshu, 4 months ago

If a/b=b/c=c/d, then b^3 + c^3+d^3 / a^3+b^3+c^3 will be ?​

Answers

Answered by ItzVenomKingXx
2

a/b=b/c=c/d= 1/k(let) \\ b=ak ,……(1) \\ c=bk. ……….(2) \\d=ck…………..(3) \\ Putting \:  b=ak. \:  from  \: eqn. (1)  \: in  \: eqn. (2) \\ c=ak^2……….(4)  \\ d=ak^3………………(5) \\ To  \: prove :- (a^3+b^3+c^3)/(b^3+c^3+d^3) = a/d \\ </p><p>L.H.S.=(a^3+b^3+c^3)/(b^3+c^3+d^3) \\ Putting  \: b=a.k…….(1).   \\ \: c=a.k^2………..(4)  \\ \: . and.  \: d=a.k^3…………(5) \\ =(a^3+a^3.k^3+a^3.k^6)/(a^3.k^3+a^3.k^6+a^3.k^9) \\ </p><p>=a^3(1+k^3+k^6)a^3.k^3(1+k^3+k^6) \\ = 1/k^3 \\ Putting  \: k^3= d/a  \: from \:  eqn. (5)</p><p>= 1/(d/a) \\ =a/d. Proved.

Similar questions