if a/b= b/c,prove that (a+b+c)(a-b+c)=(a²+b²+c²)
Answers
Answered by
4
Step-by-step explanation:
HERE a/b=b/c,
then ac=b^2 equation 1
now
RHS
(a+b+c)(a-b+c)
THEN
a^2-ab+ac+ab-b^2+bc+ac-bc+c^2
we know that ac=b^2
a^2-b^2+c^2+b^2+b^2+ac-ac+bc-bc
a^2+b^2+c^2
RHS=LHS
HENCE PROVED
Answered by
15
Given :
- a/b = b/c
To Prove:
- (a+b+c)(a-b+c)=(a²+b²+c²)
Proof :
Let , a/b = b/c = k (say)
⟹ a = bk and b = ck
⟹ a = ck.k and b = ck .... (1)
⟹ a = ck² .... (2)
And b = ck
Now, L. H. S of the given result, =(a+b+c)(a-b+c)
=(ck² + ck + c) (ck² - ck + c) [U eq 1 and 2]
=c(k² + k + 1) c(k² - k + 1)
= c²(k² + 1 + k) (k² + 1 - k)
= c²[(k² + 1)² - k²]
= c² ( k⁴ + 2k² + 1 - k²)
= c²(k⁴ + k² + 1) ....(3)
And R. H. S of the given result,
= a² + b² + c²
= (ck²)² + (ck)² + c²
= c²k⁴ + c²k² + c²
= c² (k⁴ + k² + 1) ....(4)
From,equation (3) and (4),
It follows that, (a+b+c) (a-b+c)=(a²+b²+c²)
Similar questions