Math, asked by thaparinkee8, 2 months ago

If a:b = b:c then prove that 1 upon 1 + a + 1 upon 1 + b + 1 upon 1 + c = 1​

Answers

Answered by suhail2070
0

Answer:

\frac{(1 + a)(1 + b) + (1 + b)(1 + c) + (1 +a)(1 + c) }{(1 + a)(1 + b)(1 + c)} = 1 \\  \\ hence \:  \: proved.

Step-by-step explanation:

 \frac{a}{b}  =  \frac{b}{c}   =  \gamma \\ \\  \\ then \: a =  \gamma \times b \\ \\    \\ b =  \gamma c   \\  \\ a=   { \gamma }^{2} c \\  \\ \\ lhs =  \frac{1}{1 + a}  +  \frac{1}{1 + b}  +  \frac{1}{1 + c}  =  \frac{(1 + a)(1 + b) + (1 + b)(1 + c) + (1 +a)(1 + c) }{(1 + a)(1 + b)(1 + c)}  \\  \\  = \frac{ 1 + ab + a + b + 1 + b + c + bc + 1 + a + c + ac}{(1 + a)(1 + b)(1 + c)}  \\  \\  =  \frac{3 + 2a + 2b + 2c + ab + bc + ca}{(1 + a)(1 + b)(1 + c)}  \\  \\  =  \frac{3 + 2 { \gamma }^{2}    c + 2 \gamma c + 2c +  { \gamma }^{2}c \gamma  +  \gamma c + c { \gamma }^{2}c  }{(1 +  { \gamma }^{2} c)(1 +  \gamma c)(1 + c)}  \\  \\  =  \frac{3 + 2 { \gamma }^{2}    c + 2 \gamma c + 2c +  { \gamma }^{2}c \gamma  +  \gamma c + c { \gamma }^{2}c }{3 + 2 { \gamma }^{2}    c + 2 \gamma c + 2c +  { \gamma }^{2}c \gamma  +  \gamma c + c { \gamma }^{2}c }  \\  \\  = 1 \\  \\  = rhs

Similar questions