Math, asked by deep732124, 1 month ago

if a:b=b:c then prove that

plz friends don't answer Irrelevant​

Attachments:

Answers

Answered by charlidamelio101
0

Answer:

I am sorry :( Idk, maybe someone has already asked this?

Step-by-step explanation: ...

Answered by Salmonpanna2022
2

Step-by-step explanation:

Given that:

 \tt \red{If \:   \blue b \:  is  \: a \:  mean  \: proportional \:  between \:   \blue a  \: and  \:  \blue c, } \\  \\

To prove:

 \tt That \:  \red {\frac{ { {a}^{2}  - b}^{2} +  {c}^{2}  }{ {a}^{ - 2}  -  {b}^{ - 2} {c}^{ - 2}  } } =  {b}^{4}  \\  \\

Solution:

 \tt{Now  \: b  \: is \:  mean \:  proportional \:  between \:  a, \: c \:   then  \:   {b}^{2} =ac} \\  \\ </u><u>[</u><u>/</u><u>tex]</u></p><p><u>[tex] \tt{Now  \: b  \: is \:  mean \:  proportional \:  between \:  a, \: c \:   then  \</u><u>:</u><u>{b}^{2} =ac} \\  \\

 \tt \red{ \frac{ {a}^{2}  -  {b}^{2} +  {c}^{2}  }{ \frac{1}{ {a}^{2}  } -  \frac{1}{ {b}^{2} } +  \frac{1}{ {c}^{2} }   } } =  {b}^{4}  \\  \\

 \tt \: Putting \:  tht \:  value \:  of \:  \red{ b ^{2} } \\  \\

⟹  \tt \red{\frac{ {a}^{2} - ac +  {c}^{2}  }{ \frac{1}{ {a}^{2} } -  \frac{1}{ac} +  \frac{1}{ {c}^{2} }   } } =  {b}^{4}  \\  \\

⟹ \tt  \red{  {a}^{2}  {c}^{2} ( \frac{ {a}^{2}  - ac +  {c}^{2} }{ {c}^{2}  - ac +  {a}^{2} } ) }=  {b}^{4}  \\  \\

⟹  \tt \red{{a}^{2}  {c}^{2}}  =  {b}^{4}  \\  \\

⟹  \tt \red{{b}^{4}}  =  {b}^{4}  \\  \\

 \tt \underline {\red{LHS} =RHS} \\  \\

Hence proved.

Similar questions