Math, asked by Papa2887, 1 year ago

If a:b=b:c then show that (a2+ab+ b2)(b2-bc+c2)=a2b2+b2c2+c2a2.

Answers

Answered by Anonymous
5

Answer:

Hope this helps.

Given a : b = b : c   <=>  ac = b²

So

( a² + ab + b² ) ( b² - bc + c² )

= ( a² + ab + ac ) ( ac - bc + c² )

= ac ( a + b + c ) ( a - b + c )

= ac ( (a+c)² - b² )

= ac ( a² + 2ac + c² - ac )

= b² ( a² + c² + ac )

= a²b² + b²c² + b²ac

= a²b² + b²c² + a²c²


Papa2887: can i ask one more question~
Anonymous: Of course!
Papa2887: If a,b,c are in continued proportion , then show that, a2b2c2(1/a3+1/b3+1/c3)=a3+b3+c3.
Papa2887: thank you for helping me
Anonymous: Given ac=b2. Then a2b2c2=b2(ac)2=b2(b2)2=b6. So LHS = b6(1/a3+1/b3+1/c3)=(b2/a)3+b6/b3+(b2/c)3=c3+b3+a3
Papa2887: thank you very much..Please tell if u need any help.
Papa2887: If y+z-x//b+c-a=z+x-y/c+a-b=x+y-z/a+b-c, show that x/a=y/b=z/c.
Papa2887: please help
Papa2887: if a,b,c,d are in continued proportions, then show that ,(a2-b2) (c2-d2)=(b2-c2)2
Papa2887: kindly help........
Similar questions