Math, asked by akshita5857, 3 months ago

) If |ă + b| = |ā – b| then the angle between å and b
is

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: If \: |\vec{a} + \vec{b}|  =  | \vec{a} - \vec{b}|  \: then \: angle \: between \: \vec{a} \: and \: \vec{b} \: is

\large\underline{\sf{Solution-}}

We know that

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \:  \boxed{ \sf{ \: \vec{a}.\vec{a} =  { |\vec{a}| }^{2} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \:  \boxed{ \sf{ \: \vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos \theta \: }}

Now,

Given that,

\rm :\longmapsto\: |\vec{a} + \vec{b}|  =  |\vec{a} - \vec{b}|

  • On squaring both sides, we get

\rm :\longmapsto\: { |\vec{a} + \vec{b}| }^{2}  =  { |\vec{a} - \vec{b}| }^{2}

\rm :\longmapsto\:(\vec{a} + \vec{b}).(\vec{a} + \vec{b}) = (\vec{a} - \vec{b}).(\vec{a} - \vec{b})

\rm :\longmapsto\:\vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{b}.\vec{a} + \vec{b}.\vec{b} = \vec{a}.\vec{a} - \vec{a}.\vec{b} - \vec{b}.\vec{a} + \vec{b}.\vec{b}

\rm :\implies\:2 \: \vec{a}.\vec{b} =  - 2 \: \vec{a}.\vec{b}

\rm :\longmapsto\:4 \: \vec{a}.\vec{b} = 0

\rm :\implies\:\vec{a}.\vec{b} = 0

\rm :\longmapsto\: |\vec{a}|  |\vec{b}| cos \theta \: = 0

\rm :\longmapsto\:cos \theta \: = 0

\rm :\implies\: \theta \: = 90 \degree

Additional Information :-

 \boxed{ \sf{ \: \vec{a}.\vec{b} = \vec{b}.\vec{a}}}

 \boxed{ \sf{ \: cos \theta \: = \dfrac{\vec{a} \: . \: \vec{b}}{ |\vec{a}|  \: |\vec{b}|}}}

 \boxed{ \sf{ \: \vec{a}. \: \vec{b} = 0 \: \implies\:\vec{a} \:  \perp \: \vec{b}}}

 \boxed{ \sf{ \: \vec{a} \:  \perp \: \vec{b} \: then \: \vec{a}. \: \vec{b} \:  = 0}}

Similar questions