Math, asked by pubgplayer1153, 10 months ago

if a+b+c =0 and 1,w,w^2 are three cube roots of unity , then (a+bw+cw^2)^3+( a+bw^2+c^2)^3 is equal to

Answers

Answered by Anonymous
15

Answer:

<b><i><body bgcolor=pink><marquee direction="up"><font color=purple></b></i>

w is a cube root of 1 , so

w^3 = 1

w^3 - 1 = 0

(w - 1)(w^2 + w + 1) = 0

w is not 1 , so w^2 + w + 1 = 0

Therefore w^2 + w = -1 .

Let X = a + bw + cw^2 and Y = a + bw^2 + cw .

So we want to prove X^3 + Y^3 = 27abc when a + b + c = 0 .

X + Y = a + bw + cw^2 + a + bw^2 + cw

= 2a + (b + c)(w^2 + w)

= 2a - (b + c)

= 3a or -3(b + c) <--- because a = -(b + c)

XY = (a + bw + cw^2)(a + bw^2 + cw)

= a^2 + ab*w^2 + acw + abw + b^2*w^3 + bc*w^2 + ac*w^2 + bc*w^4 + c^2*w^3

= a^2 + b^2 + c^2 + (ab + ac + bc)(w^2 + w) <--- because bc*w^4 = bcw

= a^2 + b^2 + c^2 - (ab + ac + bc)

= (a + b + c)^2 - 3(ab + ac + bc)

= -3(ab + ac + bc) <--- because a + b + c = 0

= -3((-b-c)b + (-b-c)c + bc)

= 3(b^2 + bc + c^2)

So X^3 + Y^3

= (X + Y)(X^2 - XY + Y^2)

= (X + Y)((X + Y)^2 - 3XY)

= (3a)((-3(b + c))^2 - 9(b^2 + bc + c^2))

= 3a(9(b^2 + 2bc + 9c^2) - 9(b^2 + bc + c^2))

= 3a(9bc)

= 27abc

So the equation is proved .

✨✨✨✨✨

&lt;body bgcolor=pink&gt;&lt;marquee direction="down"&gt;&lt;font color=balck&gt;

♥Follow meee♥

♠30thx +Follow =INBOX ♠

Similar questions