Math, asked by popeyeparashar9744, 19 days ago

If a + b + c = 0 and abc = 1, then find the value of a3 + b3 + c3​

Answers

Answered by nayanborgohain17
2

3abc

Explanation:

 {a}^{3}  +  {b}^{3} +   {c}^{3}    - 3abc = (a + b + c)(a ^{2}  +  {b}^{2}  +  {c}^{2}  - bc - ca - ab)

Given,

a+b+c=0

 \therefore {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 0

 \therefore \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc

Hope it helps you

Answered by Jiya0071
3

If a + b + c = 0 and abc = 1, then find the value of a3 + b3 + c3

Since, a^3+b^3+c^3−3abc=(a+b+c)(a^2+b^2+c^2−bc−ca−ab)

2−bc−ca−ab)Given, a+b+c=0

2−bc−ca−ab)Given, a+b+c=0∴a^3+b^3+c^3−3abc=0

3−3abc=0∴a^3+b^3+c^3=3abc

∴a^3+b^3+c^3=3..........(abc=1)

hope it helps

Similar questions