If a+b+c=0 find a^2\bc+b^2\ac+c^2\ab
Answers
Answered by
7
a^2\bc+b^2\ac+c^2\ab
=(a^3 + b^3 + c^3)/abc -eq 1
a+b+c=0
a+b = -c
cubing both sides
a^3 + b^3 + 3a^2b + 3ab^2 = -c^3
a^3 + b^3 +c^3 = -3ab(a+b)
a^3 + b^3 +c^3 = -3ab(-c)
a^3 + b^3 +c^3 = 3abc
putting value of a^3 + b^3 +c^3 in eq 1
then
a^2\bc+b^2\ac+c^2\ab = (3abc)/abc
a^2\bc+b^2\ac+c^2\ab = 3
answer = 3
Similar questions