If a+b+c=0 find the value of (a+b-c)^3+(c+a-b)^3+(b+c-a)^3
Please tell the answers with full explanation
Answers
Step-by-step explanation:
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
If x + y + z = 0,
x3+y3+z3−3xyz=0=>x3+y3+z3=3xyz
Assume:
x = a + b - c = -2c
y = a + c - b = -2b
z = b + c - a = -2a
(Since a+b+c=0, a+b=−c, b+c=−a, a+c=−b)
We see x + y + z = a + b + c =0.
(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz
3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc
Hope this helped!
Answer:
ans is 0(zero)
Step-by-step explanation:
Let's simplify step-by-step.
(a+b−c)3+(c+a−b)3+(b+c−a)3
Distribute:
=a3+3a2b+−3a2c+3ab2+−6abc+3ac2+b3+−3b2c+3bc2+−c3+a3+−3a2b+3a2c+3ab2+−6abc+3ac2+−b3+3b2c+−3bc2+c3+−a3+3a2b+3a2c+−3ab2+−6abc+−3ac2+b3+3b2c+3bc2+c3
Combine Like Terms:
=a3+3a2b+−3a2c+3ab2+−6abc+3ac2+b3+−3b2c+3bc2+−c3+a3+−3a2b+3a2c+3ab2+−6abc+3ac2+−b3+3b2c+−3bc2+c3+−a3+3a2b+3a2c+−3ab2+−6abc+−3ac2+b3+3b2c+3bc2+c3
=(a3+a3+−a3)+(3a2b+−3a2b+3a2b)+(−3a2c+3a2c+3a2c)+(3ab2+3ab2+−3ab2)+(−6abc+−6abc+−6abc)+(3ac2+3ac2+−3ac2)+(b3+−b3+b3)+(−3b2c+3b2c+3b2c)+(3bc2+−3bc2+3bc2)+(−c3+c3+c3)
=a3+3a2b+3a2c+3ab2+−18abc+3ac2+b3+3b2c+3bc2+c3
Answer:
=a3+3a2b+3a2c+3ab2−18abc+3ac2+b3+3b2c+3bc2+c3
now you can replace values of a,b and c