Math, asked by dsrujana, 6 months ago

If a+b+c=0. Prove a^2÷bc+b^2÷ca+c^2+ab=3​

Answers

Answered by Anonymous
17

Given :-

\sf{(a + b + c) = 0 \: }

To Prove :-

\sf{\dfrac{a^{2}}{bc} + \dfrac{b^{2}}{ca} + \dfrac{c^{2}}{ab} = 3}

Using Identity :-

If , \sf{(a + b + c) = 0 \: }

then , \sf{(a^{3} + b^{3} + c^{3}) = 3abc}

Solution :-

From L . H . S -

\sf{\dfrac{a^{2}}{bc} + \dfrac{b^{2}}{ac} +   \dfrac{c^{2}}{ab}}

\sf{= \dfrac{a^{2}\times a}{bc\times a} + \dfrac{b^{2}\times b}{ac\times b} + \dfrac{c^{2}\times c}{ab\times c}}

\sf{= \dfrac{a^{3}}{abc} + \dfrac{b^{3}}{abc} +  \dfrac{c^{3}}{abc}}

\sf{= \dfrac{(a^{3} + b^{3} + c^{3})}{abc}}

By Using the identity -

\sf{= \: \dfrac{3abc}{abc}}

\sf{= \: 3}

\sf{= R.H.S.}

HENCE PROOF

Extra Using Identity :-

\sf{a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)[(a^{2} + b^{2} + c^{2}) - (ab + bc + ca)]}

Similar questions