Math, asked by sky2319, 1 year ago

If a+b+c=0, prove that a4+b4+c4=2a2b2+2b2c2+2c2a2
Please anyone answer this question

Answers

Answered by haileybates16
1

Answer: 4+4+4=12   2+2+2+2+2+2+2+2+2=18

Step-by-step explanation:

Answered by bhavani2000life
0

Answer:

Squaring on both sides of the relation,

= (a² + b² + c²)² = [-2(bc + ca + ab)²]

= 4 {b²c² + c²a² + a²b² + 2} {bc. ca + ca. ab + ab. bc}

= 4 (b²c² + c²a² + a²b²) + 8abc (a + b + c)

= 4 (b²c² + c²a² + a²b²),

∵ a + b + c = 0

∴ 2 (b²c² + c²a² + a²b²) = \frac{1}{2} (a² + b² + c²)²

And also (a² + b² + c²)² = (a^{4} + b^{4} +c^{4} ) + 2 (b²c² + c²a² + a²b²),

⇒ 4 (b²c² + c²a² + a²b²) = (a^{4} + b^{4} +c^{4} ) + 2 (b²c² + c²a² + a²b²)

Hence,  (a^{4} + b^{4} +c^{4} ) = 2 (b²c² + c²a² + a²b²)

Similar questions