If a+b+c=0, prove that a4+b4+c4=2a2b2+2b2c2+2c2a2
Please anyone answer this question
Answers
Answered by
1
Answer: 4+4+4=12 2+2+2+2+2+2+2+2+2=18
Step-by-step explanation:
Answered by
0
Answer:
Squaring on both sides of the relation,
= (a² + b² + c²)² = [-2(bc + ca + ab)²]
= 4 {b²c² + c²a² + a²b² + 2} {bc. ca + ca. ab + ab. bc}
= 4 (b²c² + c²a² + a²b²) + 8abc (a + b + c)
= 4 (b²c² + c²a² + a²b²),
∵ a + b + c = 0
∴ 2 (b²c² + c²a² + a²b²) = (a² + b² + c²)²
And also (a² + b² + c²)² = + 2 (b²c² + c²a² + a²b²),
⇒ 4 (b²c² + c²a² + a²b²) = + 2 (b²c² + c²a² + a²b²)
Hence, = 2 (b²c² + c²a² + a²b²)
Similar questions