Math, asked by barunkumarmandal1978, 4 months ago

if a+b+c=0 prove that (bc/2a^2+bc)+(ca/2b^2+ca)+(ab/2c^2+ab)=1​

Answers

Answered by vijaychaurasiya6394
0

Answer:

hnjngghdnhznzjbbxbdjbxzbjdndjdnhdndnjddgdnddn

Step-by-step explanation:

ndknrjenejebejenjendirnduendidndienwisnsinsisjsijsdjndejndjendsjnssjndjdndsndnejndjedejndjednjdndjdnfujsnddjnd

Answered by PharohX
2

 \large{ \green{ \sf \: ✿  \: GIVEN  \: \: QUESTION : -  }}

 \sf \:  if \: (a + b + c) = 0

 \large{ \green{ \sf \: ✿  \: SHOW \:  \:  THAT : -  }}

 \sf \bigg(\frac{bc}{2 {a}^{2}  + bc}\bigg) +  \bigg( \frac{ca}{2 {b}^{2}  + ca}   \bigg) + \bigg( \frac{ab}{2 {c}^{2}  + ab}   \bigg)  = 1\\

 \large{ \green{ \sf \: ✿  \:TAKING \:  \:  \:  LHS. : -  }}

 \sf \bigg(\frac{bc}{2 {a}^{2}  + bc}\bigg) +  \bigg( \frac{ca}{2 {b}^{2}  + ca}   \bigg) + \bigg( \frac{ab}{2 {c}^{2}  + ab}   \bigg)  \\

 \sf \: we \: have \: the \: relation -

 \sf \: (a + b + c) = 0

  \sf \: Taking   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \:  a =  - (b + c) \:

 \sf \: Similarly  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \: b =  - (a + c) \:  \:  \: and \\  \sf \: c  =  - (a + b) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: Now  \:  \: from \:  \:  the  \:  \: LHS

 \sf \:  2{a}^{2}  + bc =  {a}^{2}  +  {a}^{2}  + bc

 \:  \sf \:  =  {a}^{2}  + a( - (b + c))  + bc \\  =  \sf {a}^{2}   - ab  - ac + bc \:  \:  \:  \:  \:  \:  \:  \\  \sf \:  = a(a - b) - c(a - b) \:  \:  \:  \:   \:  \\  = \sf (a - b)(a - c) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: SIMILARLY

 \sf \: 2 {b}^{2}  + ca = (b - c)(b - a)

 \sf \: 2 {c}^{2}  + ab = (c - a)(c - b)

 \sf \: Putting  \:  \: in  \:  \: LHS.

 \sf \bigg(\frac{bc}{(a - b)(a - c)}\bigg) +  \bigg( \frac{ca}{(b - c)(b - a)}   \bigg) \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  + \bigg( \frac{ab}{(c - a)(c - b)}   \bigg)  \\

 \sf \: Rearrange  \:  \: this

 \sf \frac{bc}{(a - b)(a - c)}  -   \frac{ca}{( b - c)(a - b)}   \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    +   \frac{ab}{(a - c)(b - c)}     \\

 \sf \:  =  \frac{bc(b - c)  - ca(a - b)  + ab (c - a)}{(a - b)(b - c)(c - a)}  \\

 \sf \:  =  \frac{( {b}^{2}c -  {bc}^{2}    - c {a}^{2}  + abc + abc -  {a}^{2}b )}{(a - b)(b - c)(c - a)}  \\

 \sf \:  =  \frac{( c( {b}^{2}  -  {a}^{2}  ) + bc(a - b) + ab(c - a)}{(a - b)(b - c)(c - a)}  \\

 \sf \:  =  \frac{(  - c( (a + b)(a - b) ) + bc(a - b) + ab(c - a)}{(a - b)(b - c)(c - a)}  \\

 =  \sf \:  \frac{(a - b)( - c(a + b) + bc) + ab(c - a)}{(a - b)(b - c)(c - a)}  \\

 =  \sf \:  \frac{(a - b)( - ca  - c b + bc) + ab(c - a)}{(a - b)(b - c)(c - a)}  \\

 =  \sf \:  \frac{ - ca(a - b)+ ab(c - a)}{(a - b)(b - c)(c - a)}  \\

Similar questions