If a+b+c=0,show that a^3+b^3+c^3=3abc
Answers
Answered by
0
Answer:
in ncert book of ninth class, PG-48
identity 8
if x'3+y'3+z'3 - 3xyz= 0 (x'2 + y'2 + z'2 - xy - yz - xz) (x+y+z=0)
x'3+y'3+z'3 - 3xyz = 0
then,
x'3 + y'3 + z'3 = 3xyz
x=a
y=b
z=c
Answered by
1
Answer:
We know that ,
- a^3+b^3+c^3-3abc=(a+b+c) (a^2+b^2+c^2-ab-bc-ca) .... (1)
we are given that (a+b+c) =0....... (2)
comparing (1) and (2),
we get
a^3+b^3+c^3-3abc=(0) (a^2+b^2+c^2-ab-bc-ca)
which results in a^3+b^3+c^3-3abc=0
that's a^3+b^3+c^3=3abc
Hence Proved//
Similar questions