if a+b+c=0 show that a²/bc+b²/ac+c²/ab
Attachments:
Answers
Answered by
12
Question
If (a+b+c) = 0 , then show that a²/bc + b²/ca + c²/ab = 3 .
Solution
Given:-
- a + b + c = 0 ------------(1)
Show that :-
- a²/bc + b²/ca + c²/ab = 3
Explanation
We know,
★ (a+b+c)³ = a³+b³+c³+3(a+b)(b+c)(c+a)
keep value by equation (1),
➠ 0³ = a³+b³+c³+3(a+b)(b+c)(c+a)
➠ a³+b³+c³ = -3(a+b)(b+c)(c+a)
By, equ(1),
➠ c = -(a+b) --------(2)
keep these value in above ,
➠ a³+b³+c³ = -3(a+b).(b-a-b).(-a-b+a)
➠ a³+b³+c³ = -3.(a+b).(-a).(-b)
Again,
Again,By, equ(1),
➠ a+b = -c ---------(3)
So,
➠ a³+b³+c³ = -3.(-c).(-a).(-b)
➠ a³+b³+c³ = 3abc
Divided by "abc" in both sides.
➠ (a³+b³+c³)/abc = 3abc/abc
➠ a³/abc + b³/abc + c³/abc = 3
➠ a²/bc + b²/ca + c²/ab = 3
That's proved.
________________
Similar questions