Math, asked by Babuluvictory7639, 11 months ago

If a +b+c =0. The angle between a and b and c are 150 and 120 respectively then the magnitude of vector a b c are in ratio of

Answers

Answered by AditiHegde
4

Given:

a + b + c =0.

The angle between a and b and c are 150 and 120 respectively.

To find:

The magnitude of vector a b c are in ratio of ?

Solution:

From given, we have,

a + b + c = 0

a + b = - c

taking mod on both sides, we get,

⇒ |a + b | = |-c |

⇒ √(a² + b² + 2abcosα) = c²

given the angle between a and b = 150°

so, α = 150°

⇒ √{a² + b² + 2abcos150°} = c²

squaring both sides, we get

⇒ a² + b² + 2abcos150° = c²

a² + b² - √3ab = c² ........(1)

again, a + b + c = 0

b + c = -a

taking mod on both sides, we get,

⇒ |b + c| = |-a|

⇒ √(b² + c² + 2bccosβ) = a²

given the angle between b and c is 120° .

so, β = 120°

⇒ √(b² + c² + 2bccos120°} = a²

squaring both sides, we get,

⇒ b² + c² + 2bccos120° = a²

b² + c² - ab = a² .......(2)

Using equations (1) and (2), we get,

2b² - (√3 + 1)ab = 0

⇒ 2b² = (√3 + 1)ab

b = {(√3 + 1)/2}a .......(3)

again using equation (1), we get,

a² + (√3 + 1)²/4 a² - √3a²(√3 + 1)/2 = c²

⇒ a² [ 1 + (4 + 2√3)/4 - (√3 + 3)/2] = c²

⇒ a² {4 + 4 + 2√3 - 2√3 - 6}/4 = c²

⇒ a²/2 = c²

c = a/√2  ......(4)

using equations (3) and (4), we get,

a : b : c = a : (√3 + 1)/2 a : a/√2

taking LCM and "a" as common, we have,

a : b : c = 2 : (√3 + 1) : √2

Hence the ratio of  magnitude of vectors a b c

Similar questions