Math, asked by kunal0404, 1 year ago

If a+b+c = 0 then a^3+b^3+c^3 = 3abc.

Prove this identity.

Answers

Answered by 22072003
2
Identity used :

a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )

When ( a + b + c ) = 0

a³ + b³ + c³ - 3abc = ( 0 ) ( a² + b² + c² - ab - bc - ca )

a³ + b³ + c³ - 3abc = 0

a³ + b³ + c³ = 3abc

Hence proved!!
Answered by Anonymous
1

Answer:

a + b + c = 0

a³ + b³ + c³ - 3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)

= 0(a² + b² + c² - ab - bc - ca)

= 0

a³ + b³ + c³ - 3abc = 0

a³ + b³ + c³ = 3abc

Similar questions