if a+b+c =0 then a^3+b^3+c^3=
Answers
Answered by
0
000000 is the answer
Answered by
15
If a + b + c = 0
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
MARK BRAINLIEST....
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
MARK BRAINLIEST....
Similar questions