If a + b + c = 0, then a(b-c)³ + b(c-a)³ + c(a-b)³ =
(A) 1
(B) 0
(C) - 1
(D) none
Please send the full solution of this question.
Attachments:
Answers
Answered by
5
Answer:
b). 0
Step-by-step explanation:
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)
If x + y + z = 0,
x3+y3+z3−3xyz=0=>x3+y3+z3=3xyz
Assume:
x = a + b - c = -2c
y = a + c - b = -2b
z = b + c - a = -2a
(Since a+b+c=0, a+b=−c, b+c=−a, a+c=−b)
We see x + y + z = a + b + c =0.
(a+b−c)3+(c+a−b)3+(b+c−a)3=x3+y3+z3=3xyz
3xyz=3∗(−2c)∗(−2b)∗(−2a)=−24abc
Hope this helped!
Answered by
1
Answer:
0
Step-by-step explanation:
If a + b + c = 0, then a(b-c)³ + b(c-a)³ + c(a-b)³ = 0
Similar questions