if a+b+c =0 ,then evaluate a^3+b^3+c^3
Answers
Answered by
0
Answer:
If a + b + c = 0
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
Step-by-step explanation:PLS FOLLOW AND MARK AS BRAINLIEST
Answered by
1
Answer:
See,
If a + b + c = 0
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
Similar questions