If a+b+c=0 then find 1/-a2+b2+c2 + 1/a2-b2+c2 + 1/a2+b2-c2
Answers
Answered by
25
GIVEN THAT a+b+c =0 -------1²
now, 1/a²+b²+c² + 1/b²+c²-a² + 1/c²+a²-b²
=1/a²+(b+c)(b-c) + 1/b²+(c+a)(c-a) + 1/c²+(c+b)(a-b)
=1/a²+(-a)(b-c) + 1/b²+ (-b)(c-a) + 1/c²+ (-c)(a-b) (from 1)
=1/a(a-b+c) + 1/b(a+b-c) = 1/c(c-a+b)
=1/a(a+c-b) + 1/b(a+b-c) + 1/c(b+c-a)
=1/a(-b-b) + 1/b(-c-c) + 1/ c (-a-a) (frpom 1)
=1/-2ab + 1/-2bc + 1/-2ac
= 1/-2 (1/ab + 1/bc+ 1/ac )
= -1/2 (a+b+c/abc)
=-1/2 (0) (from 1)
= 0
now, 1/a²+b²+c² + 1/b²+c²-a² + 1/c²+a²-b²
=1/a²+(b+c)(b-c) + 1/b²+(c+a)(c-a) + 1/c²+(c+b)(a-b)
=1/a²+(-a)(b-c) + 1/b²+ (-b)(c-a) + 1/c²+ (-c)(a-b) (from 1)
=1/a(a-b+c) + 1/b(a+b-c) = 1/c(c-a+b)
=1/a(a+c-b) + 1/b(a+b-c) + 1/c(b+c-a)
=1/a(-b-b) + 1/b(-c-c) + 1/ c (-a-a) (frpom 1)
=1/-2ab + 1/-2bc + 1/-2ac
= 1/-2 (1/ab + 1/bc+ 1/ac )
= -1/2 (a+b+c/abc)
=-1/2 (0) (from 1)
= 0
Answered by
3
a+b+c=0
or,a+b=(-c)
or,(a+b)²=(-c)² [squaring both sides]
or, a²+b²+2ab=c²
or,a²+b²-c²=(-2ab)
or, 1/a²+b²-c²=(-1/2ab)
as a same way,
1/b²+c²-a²=(-1/2bc) and, 1/c²+a²-b²=(-2bc)
finally, put their value
.
. . (-1/2bc)+(-1/2ca)+(-1/2ab)
=(-1/2bc-1/2ac-1/2ab)
=(-a-b-c/2abc)
= - (a+b+c)/2abc
=0 [ cause, a+b+c=0]
so, the answer is 0 .
Similar questions