If a+b+c=0 then find a^2/bc+b^2/ca+c^2/ab
Answers
Answer:
3
Step-by-step explanation:
Given---> a + b + c = 0
To find ---> a + b + c = 0
Solution---> We have an identity
If x + y + z = 0 , then
x³ + y³ + z³ = 3xyz , applying it here , we get
given , a + b + c = 0
So , a³ + b³ + C³ = 3 abc
Now , returning to original problem,
a²/bc + b² / ca + c² / ab
Taking abc , LCM , we get
= (a³ + b³ + c³ ) / abc
Putting , a³ + b³ + c³ = 3abc in it
= 3 abc / abc
= 3
Additional identities--->
(1) (a + b )² = a² + b² + 2ab
(2) ( a- b )² = a² + b² - 2ab
(3) a² - b² = ( a + b ) ( a - b )
(4) ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
(5) ( a + b )³ = a³ + b³ + 3ab ( a + b )
(6) ( a - b )³ = a³ - b³ - 3ab ( a - b )
Question :------ If a+b+c=0 , then, find a^2/bc+b^2/ca+c^2/ab ......
Formula to be used
- if a+b+c = 0 , a³+b³+c³ = 3abc
Additional brainly knowledge :----
[1] ( a + b )² = a² + 2ab + b²
[2] ( a – b )² = a² – 2ab + b²
[3] ( a + b )³ = a³ + 3a² b + 3ab² + b³
[4] ( a – b )³ = a ³ – 3a² b + 3ab² – b³
[5] ( a + b )( a ² - ab + b² ) = a³ + b³
[6] ( a – b )( a ² + ab + b² ) = a³ – b³