If a+b+c=0 .Then find the factor of the expression (a+b)³+(b+c)³+(a+c)³
Answers
Answered by
3
Step-by-step explanation:
(a+b)³+(b+c)³+(a+c)³
a³+b³+3ab(a+b)+b³+c³+3bc(b+c)+a³+c³+3ac(a+c)
2(a³+b³+c³)+3(a²b+b²a+b²c+c²b+a²c+c²a)
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
Similar questions