Math, asked by hellomotto38, 1 year ago

If a+b+c=0 , then find the value of ..... (-2a)^3 + (-2b)^3 + (-2c)^3 - 3 (-2a)(-2b)(-2c)............. plzzzz answer me fast I will mark your answer as brainlist​


shadowsabers03: 0 is the answer.
shadowsabers03: Someone asked the same question at today daytime. Was that you?

Answers

Answered by mathsdude85
0

Answer:

0

Step-by-step explanation:

Given Equation is (-2a)³ + (-2b)³ + (-2c)³ - 3(-2a)(-2b)(-2c)

Now,

∴ a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

⇒ (-2a)³ + (-2b)³ + (-2c)³ - 3(-2a)(-2b)(-2c) = (0)[a² + b² + c² - ab - bc - ca]

⇒ (-2a)³ + (-2b)³ + (-2c)³ = 0.

Hope it helps!

Answered by shadowsabers03
0

(-2a)+(-2b)+(-2c) \\ \\ -2a-2b-2c \\ \\ -2(a+b+c) \\ \\ -2 \times 0 \ = \ 0

\sf{Let}

-2a=x \\ \\ -2b=y \\ \\ -2c=z

\therefore\ (-2a)+(-2b)+(-2c)=x+y+z=0

(-2a)^3 + (-2b)^3 + (-2c)^3 - 3 (-2a)(-2b)(-2c) \\ \\ \\ x^3+y^3+z^3-3xyz \\ \\ \\ (x+y+z)(x^2+y^2+z^2-xy-yz-zx) \\ \\ \\ 0(x^2+y^2+z^2-xy-yz-zx) \\ \\ \\ 0

$$\sf{Hence proved! \\ \\ \\ Thank you. :-)}

       

Similar questions