if a+b+c=0 then proof that (b+c)²\bc + (c+a)²/ca +(a+b)²/ab = 3
Answers
Answered by
0
Step-by-step explanation:
Given :-
a + b + c = 0
To find :-
Prove that :
(b+c)²/bc + (c+a)²/ca +(a+b)²/ab = 3
Solution :-
Given that :-
a + b + c = 0 ----------(1)
=> b + c = - a ---------(2)
or c + a = - b --------(3)
or a + b = - c ---------(4)
We know that
If a+b+c=0 then a³+b³+c³=3abc ----------(5)
Now,
On taking LHS :-
(b+c)²/bc + (c+a)²/ca +(a+b)²/ab
From (2),(3)&(4)
=> [(-a)²/bc] + [ (-b)²/ca ] + [ (-c)²/ab]
=> (a²/bc)+(b²/ca)+(c²/ab)
LCM of bc , ac, ab is abc
=> [(a²×a)+(b²×b)+(c²×c)]/(abc)
=> (a³+b³+c³)/(abc)
Since a^m×a^n = a^(m+n)
From (5)
=> (3abc)/(abc)
=> 3
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
If a + b + c = 0 then
[(b+c)²/bc] + [(c+a)²/ca] +[(a+b)²/ab] = 3
Used formulae:-
- If a + b + c = 0 then a³+b³+c³ = 3abc
- a^m×a^n = a^(m+n)
Similar questions