Math, asked by sapnalunawat, 9 months ago

if a+b+c=0 then prove 1/x^b+x^-c+1+1/x^c+x^-a+1+1/x^a+x^-b+1=1​

Answers

Answered by karadanna10011979
0

Answer:

Formula:

x

m−n

=

x

n

x

m

LHS=

1+x

b−a

+x

c−a

1

+

1+x

a−b

+x

c−b

1

+

1+x

b−c

+x

a−c

1

=

1+

x

a

x

b

+

x

a

x

c

1

+

1+

x

b

x

a

+

x

b

x

c

1

+

1+

x

c

x

b

+

x

c

x

a

1

=

x

a

+x

b

+x

c

x

a

+

x

b

+x

a

+x

c

x

b

+

x

c

+x

b

+x

a

x

c

=

x

a

+x

b

+x

c

x

a

+x

b

+x

c

=1=RHS

Hence proof.

Answered by sudebkundu1234
0

Answer:

1

Step-by-step explanation:

=(1/x^b+x^-c+1 × x^-b/ x^-b )+(1/x^c+x^-a+1 × x^a/x^a)+(1/x^a+x^-b+1)

=(x^-b/x^0+x^-b-c+x^-b) + (x^a/x^a+c+x^0+x^a)+ (1/x^a+x^-b+1)

=x^-b/1+x^a+x^-b + x^a/x^-b+x^a+1 + 1/x^a+x^-b+1

=x^a+x^-b+1 / x^a+x^-b+1

=1

[Prove]

Similar questions