if a+b+c=0 then prove bc/(2a2+bc) + ca/(2b2+ca) + ab/ (2c2+ab)= 1
Answers
Answered by
3
Answer:
A+c+b = 0
a = -b-c
ca = -bc - c²
2b² + ca = b² - c² + b² - bc
= - (b-c)(a-b)
lly, 2a² + bc = -(a-b)(c-a) and 2c² + ab = -(c-a)(b-c)
Now LHS = -a²/(a-b)(c-a) - b²/(b-c)(a-b) - c²/ (c-a) (b-c)
now by LCM and multiplication
= -{a²b-a²c+b²c-ab²+ac²-bc² / - (a²b-a²c+b²c -ab² + ac² - bc²)]
= 1 = RHS
Hence Proved.
Explanation:
Pls Mark My Answer As A Brainlist
Similar questions