If a+b+c=0 then prove that 1/(2a2+bc1/(2b2+ac1/(2c2+ab) =0
Answers
Answer:
Step-by-step explanation:
∴ a + b + c = 0
∴ a = -(b + c), b = -(c + a) , c = -(a + b)
Now, (2a² + bc ) = (a² + a² + bc)
= {a² + a(-b - c) + bc}
= a² - ab - ac + bc = a(a - b) -c(a - c) = (a - c)(a - b) ------------(1)
similarly, (2b² + ca) = (b - c)(b - a) -------------(2)
(2c² + ab) = (c - a)(c - b) --------------(3)
now, LHS = 1/(2a² + bc ) + 1/(2b² + ca) + 1/(2c² + ab)
= 1/(a - b)(a - c) + 1/(b - c)(b - a) + 1/(c - a)(c - b)
= - 1/(a- b)(c - a) -1/(b - c)(a - b) - 1/(c - a)(b - c)
= -[(b -c ) + (c - a) + (a - b)]/(a - b)(b - c)(c - a)]
= 0 = RHS
Hence, proved
Answer:
hope this will help you
Step-by-step explanation:
a+c+b = 0
a = -b-c
ca = -bc - c²
2b² + ca = b² - c² + b² - bc
= - (b-c)(a-b)
lly, 2a² + bc = -(a-b)(c-a) and 2c² + ab = -(c-a)(b-c)
Now LHS = -a²/(a-b)(c-a) - b²/(b-c)(a-b) - c²/ (c-a) (b-c)
now by LCM and multiplication
= -{a²b-a²c+b²c-ab²+ac²-bc² / - (a²b-a²c+b²c -ab² + ac² - bc²)]
= 1 = RHS
Hence Proved.
Read more on Brainly.in - https://brainly.in/question/5217#readmore