if a+b+c=0 then prove that a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2+ab)=1
Answers
Answered by
1
a+c+b=0=>
a= - b-c=>
ca= - bc-c2=>
2b2+ca= b2-c2+b2-bc= - (b-c)(a-b)
lly, 2a2+bc= - (a-b)(c-a)
and 2c2+ab= - (c-a)(b-c)
Now, LHS = - a2/(a-b)(c-a) - b2/(b-c)(a-b) - c2/(c-a)(b-c)
now by LCM and multiplication
= - [a2b-a2c+b2c-ab2+ac2-bc2/ - (a2b-a2c+b2c-ab2+ac2-bc2)]= 1
= RHS (Proved)
a= - b-c=>
ca= - bc-c2=>
2b2+ca= b2-c2+b2-bc= - (b-c)(a-b)
lly, 2a2+bc= - (a-b)(c-a)
and 2c2+ab= - (c-a)(b-c)
Now, LHS = - a2/(a-b)(c-a) - b2/(b-c)(a-b) - c2/(c-a)(b-c)
now by LCM and multiplication
= - [a2b-a2c+b2c-ab2+ac2-bc2/ - (a2b-a2c+b2c-ab2+ac2-bc2)]= 1
= RHS (Proved)
Similar questions