Math, asked by abhishekangadi9964, 2 months ago

If a+b+c= 0 Then Prove that (a+b)*3 + (b+c)*3 +
(C+a)*3 = 3ab(a+b)​

Answers

Answered by saanvigrover2007
2

We know that,

 \sf{ {a}^{3}  +  { b}^{3}  +  {c}^{3}  - 3abc = (a + b +c )(a^2+b^2+c^2−ab−bc−ca)}

Now, putting (a + b +c) = 0 on RHS

We get,

 \sf{ \implies {a}^{3}  +  { b}^{3}  +  {c}^{3}  - 3abc = (0)(a^2+b^2+c^2−ab−bc−ca)}

\sf{ \implies {a}^{3}  +  { b}^{3}  +  {c}^{3}  - 3abc = 0}

 \implies\sf \large \green { {a}^{3}  +  { b}^{3}  +  {c}^{3}   =  3abc}

 \\ \\

Note :

Swipe towards left to view full equation.

 \\ \\

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Answered by goelrohnit2
0

We know that,

\sf{ {a}^{3} + { b}^{3} + {c}^{3} - 3abc = (a + b +c )(a^2+b^2+c^2−ab−bc−ca)}a

3

+b

3

+c

3

−3abc=(a+b+c)(a

2

+b

2

+c

2

−ab−bc−ca)

Now, putting (a + b +c) = 0 on RHS

We get,

\sf{ \implies {a}^{3} + { b}^{3} + {c}^{3} - 3abc = (0)(a^2+b^2+c^2−ab−bc−ca)}⟹a

3

+b

3

+c

3

−3abc=(0)(a

2

+b

2

+c

2

−ab−bc−ca)

\sf{ \implies {a}^{3} + { b}^{3} + {c}^{3} - 3abc = 0}⟹a

3

+b

3

+c

3

−3abc=0

\implies\sf \large \green { {a}^{3} + { b}^{3} + {c}^{3} = 3abc}⟹a

3

+b

3

+c

Similar questions