If a+b+c= 0 Then Prove that (a+b)*3 + (b+c)*3 +
(C+a)*3 = 3ab(a+b)
Answers
Answered by
2
We know that,
Now, putting (a + b +c) = 0 on RHS
We get,
Note :
Swipe towards left to view full equation.
Answered by
0
We know that,
\sf{ {a}^{3} + { b}^{3} + {c}^{3} - 3abc = (a + b +c )(a^2+b^2+c^2−ab−bc−ca)}a
3
+b
3
+c
3
−3abc=(a+b+c)(a
2
+b
2
+c
2
−ab−bc−ca)
Now, putting (a + b +c) = 0 on RHS
We get,
\sf{ \implies {a}^{3} + { b}^{3} + {c}^{3} - 3abc = (0)(a^2+b^2+c^2−ab−bc−ca)}⟹a
3
+b
3
+c
3
−3abc=(0)(a
2
+b
2
+c
2
−ab−bc−ca)
\sf{ \implies {a}^{3} + { b}^{3} + {c}^{3} - 3abc = 0}⟹a
3
+b
3
+c
3
−3abc=0
\implies\sf \large \green { {a}^{3} + { b}^{3} + {c}^{3} = 3abc}⟹a
3
+b
3
+c
Similar questions