If a+b+c=0 then prove that (a+b-c)^3+(c+a-b)^3+(b+c-a)^3= -24abc
Answers
Answer:
please mark me brainlest
Step-by-step explanation:
As a+b+c = 0 , a³+b³+c³ = 3abc...........(2)
Let x be (a-b)/c , z be (c-a)/b and y be (b-c)/a
Substituting it in the above equation:
= (1/x+1/y+1/z) (x+y+z)
= 1+y/x+z/x+x/y+1+z/y+x/z+y/z+1
=3+(y+z)/x+(x+z)/y+(x+y)/z....................(1)
Now lets find the value of (y+z)/x = 1/x (y+z)
= c/(a-b) ((b-c)/a+(c-a)/b)
= c/(a-b) ((b²-bc+ac-a²)/(ab))
= c/(a-b) (((ac-bc)-(a²-b²))/(ab))
= c/(a-b) ((c(a-b)-(a-b)(a+b))/(ab))
= c/(a-b) ((a-b)(c-(a+b))/(ab))
= c(c-(a+b))/(ab)
= c((c-a-b+c-c)/(ab)) (adding and subtracting by c)
= c (2c-(a+b+c)/(ab)) (a+b+c=0)
= c(2c/ab)
= 2c²/ab
Similarly the values of (z+x)/y=2a²/bc and (x+y)/z=2b²/ca
Substituting in eq 1
= 3+(2c²/ab+2a²/bc+2b²/ca)
= 3+2(c³+a³+b³)/abc
= 3+2(3abc)/abc .................................. from (2)
= 3+6
= 9
Hence proved.
Read more on Brainly.in - https://brainly.in/question/105212#readmore
Step-by-step explanation:
We know that
if a + b + c = 0
then a³ + b³ + c³ = 3abc
Now ,
(a+b-c)³ + (c+a-b)³ + (b+c-a)³
= (-c-c)³ + (-b-b)³ + (-a-a)³
= (-2c)³ + (-2b)³ + (-2a)³
= - 8c³ - 8b³ - 8a³
= -8 (a³ + b³ + c³)
= -8(3abc)
= -24abc
Hence proof