if a+b+c=0,then prove that a square/bc
Answers
Answered by
0
Since c = -(a+b),
a²/(bc) + b²/(ca) + c²/(ab)
= -a²/(b(a+b)) - b²/(a(a+b)) + (a+b)²/(ab)
= [-a³ - b³ + (a+b)³] / (ab (a+b))
= (3a²b + 3ab²) / (ab (a+b))
= 3ab(a + b) / (ab (a+b))
= 3.
a²/(bc) + b²/(ca) + c²/(ab)
= -a²/(b(a+b)) - b²/(a(a+b)) + (a+b)²/(ab)
= [-a³ - b³ + (a+b)³] / (ab (a+b))
= (3a²b + 3ab²) / (ab (a+b))
= 3ab(a + b) / (ab (a+b))
= 3.
kuldeep211003:
i think question is somehow incompelete
Similar questions