Math, asked by taseen1412, 6 days ago

If a+b+c=0, then prove that (b+c)²/6bc + (c+a)²/6ac + (a+b)²/6ab = 1/2

Answers

Answered by user0888
11

\large\text{$\boxed{\bold{[Topic]}}$}

Polynomial identities

Identity of three variables

\large\cdots\longrightarrow\boxed{a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)}

This equals zero if and only if \large\text{$a=b=c\text{ or }a+b+c=0.$}

Given condition: -

\large\text{$\bullet\ a+b+c=0\Longrightarrow\boxed{a^{3}+b^{3}+c^{3}=3abc}$}

To prove: -

\large\text{$\bullet\ \dfrac{(b+c)^{2}}{6bc}+\dfrac{(c+a)^{2}}{6ca}+\dfrac{(a+b)^{2}}{6ab}=\dfrac{1}{2}$}

\large\text{$\boxed{\bold{[Step\ 1.]}}$}

We know that -

\large\text{$\cdots\longrightarrow\boxed{a+b+c=0.}$}

Consequently, -

\large\text{$\cdots\longrightarrow b+c=-a,\ c+a=-b,\ a+b=-c.$}

\large\text{$\boxed{\bold{[Step\ 2.]}}$}

The equation to prove is -

\large\text{$\cdots\longrightarrow\dfrac{(b+c)^{2}}{6bc}+\dfrac{(c+a)^{2}}{6bc}+\dfrac{(a+b)^{2}}{6bc}=\dfrac{1}{2}$}

LHS

\large\text{$\cdots\longrightarrow\boxed{\begin{aligned}&\dfrac{(b+c)^{2}}{6bc}+\dfrac{(c+a)^{2}}{6ca}+\dfrac{(a+b)^{2}}{6ab}\\\\&=\dfrac{(-a)^{2}}{6bc}+\dfrac{(-b)^{2}}{6ca}+\dfrac{(-c)^{2}}{6ab}\\\\&=\dfrac{a^{3}+b^{3}+c^{3}}{6abc}\\\\&=\dfrac{3abc}{6abc}\\\\&=\dfrac{1}{2}\end{aligned}}$}

Now, the LHS and RHS are equal.

\large\text{$\boxed{\bold{[Final\ answer]}}$}

We finish our answer.

\large\text{$\cdots\longrightarrow\boxed{\bold{\dfrac{(b+c)^{2}}{6bc}+\dfrac{(c+a)^{2}}{6ca}+\dfrac{(a+b)^{2}}{6ab}=\dfrac{1}{2}.}}$}

Similar questions